
Symmetric Quadrature Formulae for Simplexes 

By P. Silvester 

Abstract. Symmetric interpolation polynomials are defined for N-dimensional simplexes 
with the aid of a symmetric coordinate notation. These polynomials are used to produce 
symmetric interpolatory quadrature formulae of arbitrary degree of precision over 
simplexes of arbitrary dimensionality. Tabulated values of weight coefficients are given 
for triangles and tetrahedra. 

1. Introduction. Interpolative quadrature formulae for N-dimensional simplexes 
have been given by various authors, e.g., Stroud [1] or Hammer and Stroud [2]. 
Their principal attraction in applications lies in the fact that multidimensional 
regions of integration can often be closely approximated by unions of simplexes. 
The object of this paper is to show that, for any N, it is possible to define quadrature 
formulae of any degree of precision n, symmetric in the sense of Hammer, Marlowe, 
and Stroud [3]; and to give a straightforward procedure for finding the weights and 
node locations. Although the resulting quadrature formulae are not efficient in the 
sense of [3], they possess the advantage of being very convenient computationally, 
and can be generated easily for any reasonable values of N and n. They represent 
a natural generalization of the Newton-Cotes formulae to the N-dimensional case, 
and include the latter for N = 1. 

2. Notation for Simplexes. A simplex is defined by its N + 1 vertices in the 
N-space spanned by the coordinates x (1), X 

(2)J **, X(N). Let S be the N-dimensional 
simplex whose kth vertex coordinates are Xk(i), i = 1, 2, * * *, N. Let the size of 
the simplex S be denoted by v(S) and defined as 

1 Xi) ... XiN) 

(1) ~ ~ ~~~-5) ....... 
(1X ) (N) 
XN+1 ... **XN+1 

Under this definition, the size of a 1-simplex is its length, that of a 2-simplex its 
area, and so on. 

Let a point P be located within the simplex S. Let Sm denote the simplex de- 
fined by P and the vertices of S other than the mth, i.e., by vertices 1, 2, *, 
m - 1, m + 1, **, N, N + 1 of S, and the point P. Sm is contained entirely 
within S. Any interior point P thus defines a unique partitioning of S into N + 1 
subsimplexes Sk, k = 1, 2, * , N + 1. Using Eq. (1), it is readily verified that 

N+1 

(2) E 0-(Sk) = C-(S). 
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Let 

(3) m= 0f (SM) / (S) 

These numbers may be termed simplex coordinates, alluding to the fact that S forms 
the portion 0 < < 1, m = 1, ***, N + 1, of the hyperplane 

N+1 

(4) jm = 1 m=l 
in the Cartesian N + I-space spanned by P 2, I * ,zt+1, by virtue of (2). Geo- 
metrically, the simplex coordinate Dm measures normalized distance toward the 
mth vertex orthogonally from the N - 1-dimensional simplex defined by all vertices 
of S other than the mth. 

3. Interpolation Polynomials. Let polynomials Rm(z) be defined by 

m_1 
Rm (z)=HZZk m>O 

(5) 1ck=O Zm Zk 

Ro(z) = 1 

where the Zk are arbitrary distinct numbers, 0 ? Zk ? 1. An interpolation poly- 
nomial in 1-space, of degree n, is then given by 

(6) aii = Ri(Ll)Rj(v2), i + j =n 

provided the numbers Zk are chosen symmetrically, that is, provided that 

(7) zp + zq = 1 whenever p + q = n. 

Choosing Zk = k/n, the polynomials aij turn out to be the conventional closed 
Newton-Cotes interpolation polynomials, while the choice Zk = (k + 1)/(n + 2) 
produces the open Newton-Cotes polynomials, expressed in terms of t, and t2. 

Equations (6) and (7) suggest a direct generalization for the N-dimensional case. 
Let 

N+1 N+1 

(8) aklk2 ... kN+l H Rki(), ki = n 

subject to the proviso 

N+1 N+1 

(9) z1 = I whenever li=n. 
i=1 i=1 

A solution, valid for any N and n, of (9) is 

(10) Zk = _ _ _ _ 

( ) ~~~~~n + gu(N + 1 ) 

where gu is a nonnegative parameter. The specific choices g = 0 and 1 lead to 
equispaced point lattices over the simplex, with the boundary nodes included and 
not included, respectively. When N = 1, these correspond to the closed and open 
Newton-Cotes interpolation nodes. In the closed case , = 0 the auxiliary poly- 
nomials Rm(z) become 
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1 m_1 
Rm(z) = H! I (Nz-k), m > 

and in the open case, y = 1, there is obtained 

lrm (12) Rm(Z) WH H [( + X + N 1)z k], M > O. 

Clearly, other polynomials and corresponding node placements will result from 
other choices of gu. 

4. Quadrature Formulae. In general, all interpolatory quadrature formulae may 
be written in the form [4] 

(13) f f(x(1, **)dU o (S) cifi 

where the summation extends over all the interpolation nodes in S. The weights 
ci are given by 

(14) ci= I i(, ..., IN+1)dU 

where a i is the polynomial associated with the ith interpolation node. The integrals 
of monomials over a simplex are well known [5], 

(15)~ ~ ~~~P~ 1 .* P1!P2! ... pN+1!N! (15) | t 
lpl ... rN+l dU = 

(i + + PN+1+ N)! 
The quadrature weights ci are therefore readily evaluated by expanding the poly- 
nomials and integrating term by term. All required arithmetic steps are direct, 
and can be coded for evaluation by computer. There is no essential difficulty in 
obtaining formulae for any reasonable N and n. 

5. Quadrature Weights for N = 2 and N = 3. For N = 1, (14) gives the well- 
known and extensively tabulated Newton-Cotes quadrature weights for one- 
dimensional integration. For N = 2 and N = 3, corresponding tabulations appear 
below. To economize on the extent of the tables, the weights have been numbered 
with N + 1 subscripts corresponding to those of the interpolation polynomials; 
e.g., for N = 2, 

(16) Cijk- =a)j?ijk(?I, ?2, ?3)dU 

From (8) and (15), it is readily seen that the formulae are symmetric, and the 
weights the same for any permutation of i, j, k: 

(17) Cijk = Cikj = Ckii 
- 

* - c c 

Only one of these weights needs to be tabulated. In the tables, the weights are 
expressed exactly as integer quotients, the numerators being tabulated individually 
and one common denominator being shown for each of the open and closed forms. 

Application of the tabulated data to a specific simplex is made as follows. Let 
the vertices of the triangle (or tetrahedron) be Xo, X1, X2 (or Xo, Xi, X2, X3), 
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TABLE I 

Newton-Cotes Quadrature Weights for Triangles 

WEI GH T S 

Degree Point Numerators Denominators Number of 
n index closed open closed open points v 

1 100 1 1 3 3 3 

2 200 0 7 3 12 3 
110 1 -3 3 

3 300 4 8 3 
210 9 3 120 30 6 
111 54 -12 1 

4 400 0 307 3 
310 4 -316 6 
220 - 1 629 45 720 3 
211 8 -64 3 

5 500 11 71 3 
410 25 -13 6 
320 25 57 1008 315 6 
311 200 -167 3 
221 25 113 3 

6 600 0 767 3 
510 36 -1257 6 
420 -27 2901 6 
411 72 387 840 2240 3 
330 64 -3035 3 
321 72 -915 6 
222 -54 3509 1 

7 700 1336 898 3 
610 2989 -662 6 
520 3577 1573 6 
511 32242 -2522 3 
430 2695 -191 259200 4536 6 
421 -6860 2989 6 
331 44590 -5726 3 
322 3430 1444 3 

8 800 0 1051445 3 
710 368 -2366706 6 
620 -468 6493915 6 
611 704 1818134 3 
530 1136 -9986439 6 
521 832 3757007 14175 3628800 6 
440 -1083 12368047 3 
431 672 478257 6 
422 -1448 10685542 3 
332 1472 -6437608 3 

where Xi denotes a two (or three) component vector. For a quadrature formula of 
precision n, each node is designated by three (or four) integers zi such that Ezi = n; 
these nodes will be located at the points El=o (zi + A)Xi/(n + 3g) on the triangle, 
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or the points 3=o (zi + A) Xi/(n + 4g) in the tetrahedron. Formulae of open 
type are obtained by taking A = 1, of closed type by taking gi = 0. Each of the v 
distinct points obtained by permuting the point indices-zi is to be assigned a weight 
N(/l) c/D(li), o- being the area (or volume) of the simplex, N(g1) and D(/.) the 
tabulated numerator and denominator. As an example of this procedure, the node 
index numbers and quadrature weights are given in Fig. 1 for the closed formula 
with n = 3, N = 2. 

The tabulated figures have been verified by computing integrals of monomials, 
and some polynomials, up to and including degree n + 2. Their degree of precision 
has been verified as n. 

TABLE II 

Newton-Cotes Quadrature Weights for Tetrahedra 

WEI GH T S 

Degree Point Numerators Denominators Number of 
n index closed open closed open points v 

1 1000 1 1 4 4 4 
2 2000 -1 11 4 

1100 4 -4 20 20 6 
3 3000 1 20 4 

2100 0 13 40 120 12 
1110 9 -29 4 

4 4000 -5 79 4 
3100 16 -68 12 
2200 -12 142 420 210 6 
2110 16 -12 12 
1111 128 2 1 

5 5000 33 277 4 
4100 -35 97 12 
3200 35 223 4032 2240 12 
3110 275 -713 12 
2210 -75 505 12 
2111 375 -53 4 

6 6000 -7 430 4 
5100 24 -587 12 
4200 -30 1327 12 
4110 0 187 12 
3300 40 -1298 1400 1512 6 
3210 30 -398 24 
3111 180 22 4 
2220 -45 1537 4 
2211 0 -38 6 

6. Conclusion. The Newton-Cotes quadrature formulae, well known for one- 
dimensional integration, lend themselves to direct generalization in N-dimensional 
simplexes. For the most important two- and three-dimensional cases, weight co- 
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efficients for open and closed forms have been computed and tabulated. 

12 1 2~ ~ ~~~~~~2 

0 1 ~ ~ ~ ~ ~~ 

a b 
FIGURE 1. Cubic Quadrature over a Triangle. (a) Index Numbering of Quadrature Nodes, 

(b) Quadrature Weights at the Nodes. 
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